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ON THE ASYMPTOTIC BEHAVIOR OF THE WAVE FUNCTION *
OF A SYSTEM OF CHARGED PARTICLES

by

R. K. PETERKOP

The asymptotic behavior of the wave function describing
collision processes (e.g., ionization) that result in the forma-
tion of more than two free particles is well known, if all the
particles that are formed are neutral and also if not more than
two of them are charged (see, e.g., [1,2,3]). An asymptotic
form for an arbitrary number of charged particles was proposed
in [7], in which an asymptotic expansion containing powers of
logarithms was obtained, similar to Fock's expansion [4,5,6].
The results of [7] were further developed in [8-11], as well as
in [12,13]. The asymptotic form treated in these papers is
subjected to criticism in [14]. However, the remarks made in
(14] cannot be recognized as valid. A brief response to them is
contained in [15]. 1In the present article the problem of the
asymptotic behavior of the wave function is examined in greater
detail. Greater attention is paid to those aspects of the

problem which, because they were neglected, led to errors in

[14].
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1. System of Neutral Particles

In the case of short-range forces (it 1s sufficient
if the interaction potential decreases faster than r—l) the part
of the wave function that describes the motion of N particles

scattered after collision has an asymptotic behavior as p — «:

Y (ry, ...,rN)Np_Tf_(kl,-»-,k.\’) ¢e, (1)
lx,-])‘ . th S
where x==1 77-7-”.—% mvzzy_ﬁ; (2)
1 s
'p=Vm1rrf—~[—...+mNr§v; (3)
n=3N—1;

ry is the radius vector; m. 1s the mass; Ki 1s the wave vector

(momentum) of the i-th particle (we are using a system of units
in which h = 1); f 1s the scattering amplitude; and E 1is the

energy of the system.

In formula (1) the momenta and radius vectors are

assoclated by the relation

k; = mmo~!r, (5)

Expressing ki in terms of the velocity Vi, We get

vy=unp i,




Relation (6) expresses the obvious fact that the
equivalent of scattering cases in which N particles with
velocities v, are formed 1s the asymptotic region of con-
figuration space in which the radius vectors of the particles
are proportional to these velocities. At the same time the
separation between interacting particles should be so large .

that the motion of the particles can be consilidered free.

Obviously, relations (5), (6) correspond to the free-

motion formula of classical mechanics
r. =v.t, (7)

where 1t 1s time.

Essentlally, formula (1) states that when the inter-
particle separation is large, the particles move as free particles -
the wave function is a superposition of plane waves. In order to
get a clearer notion of the meaning of formula (1), let us con-

sider the following superposition of plane waves:

. ) pz
(D(rl,--wl'N):g.[s(—mL; +-.'+
' Z:;'—'%% F Py - oPN) €xp (ipyry + .-+ + ipaTN) dpy - - - dDu, (8)
where
. o 4
g =2t (—2xiz) 2 (my...my) 2.



Generally speaking, any wave function can be expanded
into a series (an integral) in plane waves, but a &-type
dependence on energy in the integrand may occur only in the case
of free motion.

If r; — =, the major contribution to the integral (8)
is made only by waves that correspond to the given region of con-

figuration space. In other words, the integrand has stationary

points defined by the conditions

(10)

f
I+
-

P;

£%)

where k; 1s determined according to (5). The minus sign in
(10) refers to a wave moving toward the center (i.e., toward the
converging wave). Using the stationary phase method and assuming
that the amplitude of the converging wave in the asymptotic
region being considered is zero, we find

, ‘ o

O ~Y ~ pf_z'f &y, - .-, k) €%°. (11)

Thus, we can assume that Y represents superposition of plane

waves at great distances.

Taking (5) into account, the index of the exponent on

the right-hand sides of (1) and (11) is obtained as
iKp=l’k1rl+....-}-ikNrN. (12)
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Formula (1) can be rewritten in the form

-~
2

Y ~p

Thus, when separation is large, the superposition of
plane waves reduce to a single wave. This fact has a completely
clear meaning. Imegine a source of finite dimensions (a reaction
zone) emitting particles. At short distances from the sourcé
particles emanating from various points in the reaction zone all
pass through the same points in space. Consequently, at short
distances there is no definite correlation between the direction
of particle motion and the direction of the radius vector (it
is never possible to disregard the fact that the source has finite
dimensions). But as the distance increases, the number of cases
in which the various directions intersect gradually disappears.
At sufficlently great distances the reaction zone can be con-
sidered as a point particle source. The direction of particle
motion in this case coincides with the direction of the radius

vector, and this is expressed by formulas (5), (6).

Therefore, formula (1) has the following physical
meaning.
1. Particle motion can be considered free — it 1s

described by superposition of plane waves.

2. In this superposition all the components that do

not correspond, in the sense of (5), (6), to the region of con-

figuration space being considered vanish. Superposition of plane

waves reduces to a single wave.

-5-
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rrom this we get the conditions of applicability of
Tormula (1).

1. In the region of configuration space being examined
the potential energy is negligibly small as compared to the
kinetic energy.

2. The region being examined 1s so far from the
reaction zone where interaction is actually taking place that

the latter can be considered a point particle source.

With o as large as desired, the configuration space
of many particles contains regions in which the interaction
potential does not vanish. ZEven in this case, however, it can
be assumed that collision actually takes place in a bounded
zone. If the potential is repulsive, remote interaction regions
quickly empty (with increasing distance), but if the potential
is attractive, particles do not vanish. It goes without saying

that formula (1) 1s not applicable in these regions.

2. BSystem of Neutral and of Two Charged Particles

In cases when charged particles also form, the asymptotic
behavior of the wave function has been known only for collision
processes in which no more than two particles, in Coulomb inter-
action, are formed. Then the wave function at great distances
is a superposition of functions in which the relative motion of

both Coulomb particles is described by the well-known Coulomb



i

wave function, while the motion of their center of inertia and

that of all the remaining particles is described by plane waves.

.....

similar to (11) for the superposition of the products of plane

waves and Coulomb functions.

A Coulomb function that has an "incident + convergent

wave' asymptotic and i1s normalized analogous to a plane wave 1is

9(e,k,r) = x(a,k,r)eikr, (14)
- o
where x(o,k,r) = e 2 I*(l -1e)F(ie,l,-i(kr+kr)); (15)

and F 1s a degenerate hypergeometric function.
Function (14) satisfies the equation
1 ZC mv2 | '
‘(— — A + == - — )@ = 0. (17)
Consider the asymptotic behavior of the following integral,

different from (8) in that the plane waves are replaced by Coulomb

functions:




O (ry,..yen) =g 3

pilz e ! _y;’:\f/ .')"
m, o ~/ \P1r- -2 P} A

(18)

X @ (ai,pb r) ... @ (@, pn Ix) dpy - .. dpy.

From (14) it is evident that (18) differs from (8)
only because the integrand contains the additional multipliers
X(ai,pi,ri). These additional functions oscillate considerably
slower as ri—> e than do the exponents, and therefore their
oresence does not change the stationary point, which is determined
by formula (10) in this case also. The multipliers x(ai,pi,ri)
at the stationary point can be considered as constants (everywhere
equal to the value at this point) and together with the amplitude
f can be taken outside the integral sign. Consildering further

that 1f the vectors k and r coincide in direction, then as

T —>®

X(a, k, r) ~exp (— ialn 2kr); (19)

we get finally

Dr~p 2k, ..., kn)exp li (ko —ay In 2kry —. .. —ay I Ziwry)l. (20)

Here, as in the derivation of (11), the absence of a converging

wave 1s assumed.

Formula (20) is obviously also applicable to the super-

position of products of Coulomb functions and plane waves. Then,

some  &y=0. If all «; = 0, then we get (11) from (20).

_8-




In the case when the integrand in (18) contains one
Coulomb function and one plane wave, formula (20) corresponds
to the results of [3], relating to the asymptotic behavior of
the Green's function for a system consisting of one neutral and

two charged particles.

Using (12) and (16), formula (20) can be rewritten in a

form analogous to (13):

q)KNP_—Z—f (kli“': kf\f) C-\p [i (I{lrl + ... + kNrN—
e Z, (21)
-——;1——1 In2kr,— ... — ‘ZﬁfN—ln 2kl
The conditions of applicability of formulas (20) and

(21) are the same as for formulas (1),(11l), and (13) (see p. 6).
Formula (20) was derived in the same way as (11) except that
additional use was made of (19). If the next term on the right-
hand side of (19) is estimated using an asymptotic expansion of
the degenerate hypergeometric function, we find that the appli-
cabllity conditions (19) are

o : o

2kr <5 2kr <L (22)

This means that the Coulomb potential energy must be considerably

less than the kinetic energy.




It is not difficult to see that the wave function can

be represented in the form of (18) if the Coulomb potential

energy of the system has the form

Note that, taking (6) into account,

NZC N 7.1 :
i Gy “ t S
2 e 0 (24)

as p-»,

If the number of charged particles 1s greater than two,
the Coulomb potential energy of the system cannot be written in
the form of (23), aﬁd the wave function of the system cannot be
written in the form of a superposition of products of Coulomb
functions and plane waves. Therefore (18) and (20) can have a
direct physical meaning only if more than one of the @, are
different from zero. 1In this case the single Coulomb function
describes the relative motion of both charged particles.

Formulas (18) and (20) are applicable, e.g., to the problem‘of
single ionization of a negative hydrogen ion by an electfon,

when a neutral atom and two electrons are formed. However, %hey are
no longer applicable to the case of electron ionization of a

hydrogen atom, when three charged particles are formed.

~-10-




3. General Case of a System of Charged and Neutral Particles

An asymptotic form for the wave function of a system
containing an arbitrary number of charged particles was proposed
in [7]. Considered in this article was a system of N electrons
in the field of a fixed nucleus. The Schrddinger equation can
then be written in the form

1 AY O 27(Q

9 o )
[ W} A e D Q) =
{p” 5 (9 &?.\ t 2 - +21:]\1r(p, Q) =0,

where A% 1s the angular portion of the Laplace operator in

(25)

3N-dimensional space; Q 1s a collection of n variables (angles)

determining the directions in 3N-dimensional space. These
variables determine the directions of the radius-vectors in
three-dimensional space and the ratio of their absolute values.

Taxking (5) into account, it is clear that as p—>«, every Q

corresponds to a definite set of momenta ki,...,KN. Thus, every

direction ~ Q corresponds to a specific outcome of the collision.
In the expression for the scattering amplitude the momenta can

be replaced by Q:
£kyse0 k) = £(0).
Note that the electron system being examined in the

field of a fixed nucleus does not restrict the generalitly of

the analysis. The Schrddinger equation for a system of N + 1

~11-




charged particles with arbitrary masses and charges can also be

reduced to the form of (25) using a center-of-inertia system.

It was demonstrated in [7] that equation (25) has a

formal sclution in the form of the series

V@) 5,

o @) = TF T g (o L0l (27)

m=0 p=0

The specific form of the expansion follows uniguely
from more general premises. The expansion coefficilents Arm
L

are expressed in terms of various-order derivatives of A (Q)

[oX¢]
and V(Q). For the existence of the expansion it 1s necessary
that these two gquantities be infinitely differentiable as
functions of the angles in configuration space. Note that AOO(Q)

is the scattering amplitude, while V(Q) 1is equal to the product

of p and the Coulomb potential energy of the system of particles.

Considering only the first term of expansion (27) and

denoting AOO(Q) = £(Q), we have

o, Q) mp T (@) TP, (28)

The applicability conditions for formula (28) are the

same as those for formula (1) (see p. 6). Let us remember that

~12-
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one of the necessary conditions states that the potential energy

must be considerably less than the total energy; that 1is,

<k | (29)

As is evident, (28) differs from (1) only in that the
phase has a logarithmic term. Phase distortion due to scattering
in a certain direction QO proves to be the same as for the
solution of eguation (25) with thevpotential independent of Q
(everywhere equal to V(Qo)p—l). It can be sald that the
asymptotic motion of a system of charged particles i1s the same
as in the case when this system moves in configuration space
with constant (direction—independent) Coulomb potential. This
is a result to be expected. At great distances the motion of
Coulomb particles approaches the motion of free particles
asymptotically. The latter is characteristic in that the velocities
do not change with time, while the ratio of distances tends to the
ratio of velocities. Consequently, the components of QQ ténd to
constant limits. Hence %t is clear that the function V(Q) -should

also tend to a cohstant value.¥*

Expansion (27), analogous to the well-known Fock

expansion [4-6], contains powers of logarithms.

*1T follows from (7) that Q(t)- const = a as t -®, whence

- V{(Q(t)) -const = V(QO).




Based on the example of the problem of electron
ionization of a hydrogen atom at zero total orbital moment, it
was also demonstrated in [7] that the phase we obtained for the
wave function corresponds to the asymptotic behavior of the time-

independent portion of the classical action

S(p, Q)N‘/.p—'ji—V(Q)ln 0. (30)

The validity of formula (30) for the general case was
demonstrated in [8]. To derive (30) in [7,81, the first thing
done was to determine the asymptotic behavior of the solutions
to the equation of motion and then the action was computed as
the integral along the trajectory. The problem of asymptotic
behavior as considered within the framework of classical mechanics
will be discussed in greater detail in the last section of this

article.

The asymptotic form (28) was uséd in [9] to determine
the asymptotics of a scattered wave and to establish relationships
between the amplitudes of direct and exchange scattering during
"ionization. lIt was used in [10] to study the similarity of
integral expressions for the amplitude. It was shown in (11],

for the case of electron ionization of a hydrogen atom, that the

logarithmic phase distortion we discovered also follows from the

.



asymptotic behavior of an exact system of equations. Discussed
in the same paper were other vossible ways of writing the
logarithmic term in the phase of the wave function; of these

ways note

D A
= [ vy —v; v (31)

where Zi and Zj are the particle charges of the system being
examined (including Z,, which is the charge of a fixed center

with zero velocity and radius vector).

That the logarithmic term i1s not unique is implied
by the fact that any function of Q can be added to it,
simultaneously subtracting the same function from the phase
of the scattering amplitude. Obviously, Y does nof change
in this case. The phase of the scattering amplitude is not
specified in advance. Consequently, the logarithmic term is
determined, in general, with accuracy up to an arbitrary function
of the angles. Thus, for instance, 1n p can be replaced by
In 2np, which corresponds to the form which is used in writing
the asymptotic of a single-particle Coulomb function. The non-
uniqueness of the phase is also clear from the fact that any
asymptotic expression that considers only infinitely increasing
terms is determined, in general, with accuracy up to terms

Tending to finite limits.

According to (6), the Coulomb potential energy as p~

can be written in a form analogous to (24):

~15-




Z:Z; _ V(9
2 {ri—]r- ( N~Z i\ —V;

i>j 7l P i>;
Using (6) once again, we get

p Iy ."1~ 1"_‘-1)
1np~ \\—v (nfr; —rj0 = Inx —lInyvy —v5).

Hence it is evident that (31) is a possible expression for the

logarithmic term in the phase.

Using (12) and (31), formula (28) can be rewritten in

a form analogous to (13) and (21):

. n .
Wrwé“zf(hf“,kweprOﬁry+---+-kxfx—'

-——Z IV =5, {r;—r; DL

i>J

The asymptotic form (28),(34) can be applied directly

to the case of a system containing both charged and neutral

particles [8,11]. Then expression (31) for the logarithmic term

seems to be more natural, since 1t depends only on the charged

particle coordinates. Transition to neutral particles 1s carried

out by setting the corresponding charges equal To zero.

Obviously, if the Coulomb potential energy (32) is

reduced to the form (23), then (34) changes intg (21). Thus,

-16- .

(32)

(33)

(35)




(34) is a generalization of (21). Taking (24) into account, it
is not difficult to understand that (20) and (21) can also be

written in form (28).

Let us clarify in what sense asymptotic form (28,34)
can be represented as a superposition of the products of Coulomb
functions describing the motion of individual particles in fields

produced by some effectilve charges.

In order to construct such a superposition it 1s necessary
to find effective charges gi with which the Coulomb potential

in the asymptotic regilon can be reduced to form (23):

N
2t~ B , (35)

. ——r.
i>j K ’[ j==1 ©

Using (24) and (32), we get

N
Z:Z; —_ Z: g
Z #‘y’i __Jv, ] - ; v; .

i>j

(36)

This condition ensures the equivalence of the logarithmic terms

in the phase for (21) and (34).

In the general case the collection N of numbers gi
may satisfy (36) not-for all, but only for some (no more than N)
collections of values of Vi, 0T in other words, for several

directions Q. Thus, we can construct a superposition of the

products of Coulomb functions of form (18) such that the same

-17-




asymptotic as the exact wave function holds in several (SN) given

directions in confliguration space. In all the other dir

ctions

wn
(0]

the asymptotics of these functions in the general case will be

different.

If only one direction is given, then considerable
arbitrariness prevalls in the choice of the effective charges.
For example, 1t can be assumed that all but one of them equal

zero. The other possibility is that all gi are ldentical.

A condition of form (36) must be taken into account
in setting up integral expressions for the ionization amplitude

[10].

A superposition of form (18) ensuring the correct
asymptotic in all directions can be constructed if the effective
charges are assumed to be not constant, but dependent on the

momenta Pyse-sPy in accordance with the condition

N

[o A

N
et

2

1=

Z; % Z,Z;
pifm; - 2 | pafm; — pi/my | ‘ (37)

i=1 i>]

In this case the above-mentioned arbitrariness in the choice of

C.

l(or ai) also prevails.

The result of the presence of the logarithmic term in

the phase is that the usual methods of expansion in a system of

functions of the angles are not applicable to VY. In the

-18-




asymptotic form of the wave function not only the scattering
amplitude 1s dependent on the angles, as 1n the case of snhort-
range forces, but also the logarithmic term in the phase.
Therefore, expansion of the wave function intoc a series with
respect to a system of functions of angles will not, generally
speaking, correspond to expansion of the scattering amplitude
into a series in the same functions. Radial functions will not
correspond to partial amplitudes. In order for this to occur,
the multiplier with the logarithmic phase would first have to
be isolated from the wave function before expansion. This factor
may complicate numerical computations to a conslderable extent.
An exception 1s the case when V(Q) depends additively on the
arguments of the different angle functions. Another exception
is the case when the expansion 1s carried out with respect to
functions having an asymptotic analogous to plane waves, 1l.e.,
functions describing motion in a specific direction (infinity),
so that V(Q) has a definite value at infinity. In the latter
case expansion in the asymptotic region is analogous in form to
superposition (18), with the condition that a. be determined
in accordance with (37). Thus, for example, in the problem of

electron ionization of a hydrogen atom, the expansion

W = J.Fk (I‘l) L{Jk (1‘2) dk ‘ (38)
\
is admissible for the continuous-spectrum part on the basis of

this viewpoint, but

-19-



11’ — Z f F)ilm(i'l) “r'lclm (1'2) d/{ (39)
: Im 0
is inapplicable.

The integral expressions for amplitude obtained in
[10] were used in [12] to derive a threshold law for the ionization
cross section. It was found that the cross sectlion near threshold
depends linearly on the energy. This result was obtained by
going tQ the 1limit E =0 1in the integrand. When this is done,
however, the integrand converges only by means of an additional
exponential multiplier. Therefore, a further analysis of this

problem i1s desirable.

* The asymptotic behavior of the wave function was con-
sidered by a somewhat different method in [12,13] for the problem
of electron lonization of a hydrogen atom. In a way similar to
that of Bohm [18], the desired solution was represented in the
Torm

¥(p,0) = G(p,0)e 0(P>D) (0)

where G and U are real.

By means of successive approximations it was shown that

when p-o

~20~




A

"V (Q)In 2xp; - (EL)

UnS~up—

v

C~o THQ), (42)

. where S 1s the action  (the solution of the Hamilton-Jacobi

equation).

Expression (41) is equivalent to (30), since it differs by
a term independent of p . In contrast with [7,8], the asymptotic
behavior of the action was determined in [12,13] by solving the

Hamilton-Jacobli equation by successive approximation.

The asymptotic form for E = 0 was also proposed in
(12,131, which was not done in [7,11]. When E = O, the

Hamilton-Jacobl equation has a solution of the form

S(2,9) = a(®) V5. . (43)
Instead of (42), when E = 0, we have

_ 9
I
Geo TB(0). o
In contrast with (42), where £ can be chosen arbitrarily (it is
determined if all the boundary conditions of the scattering

N

problem are taken into account), b as a function of Q should

01~




satisfy a specific partial differential equation. It remains
unclear to what extent this equation is compatible with the

possible boundary conditions.

By somewhat supplementing the results of [12,13] we
note that when E = 0 we can construct a formal solution to
equation (25) in the form of the series

n o, 1 m
2y )

Tl o
e PR (45)

m=(

Wie Q=c¢

In doing so, however, bO(Q) must satisfy the above-mentioned

partial differential equation (in expansion (27), b (Q) can be
(o]

chosen arbitrarily) in order to exclude positive powers of

expansion. Note that there are no logarithmic terms in (45),

and the expansion is carried out in powers of Vp.

Reference [13] also contains an extensive review of the
various aspects of asymptotic behavior, considered on the basis

of the problem of electron ionization of a hydrogen atom.

Recently there appeared an article by Temkin [14] in
which the asymptotic form considered in [7-13] is taken to be
incorrect. Let us briefly note the basic critical remarks made

in [14].

20




1. The logarithmic term in the phase of the asymptotic
rorm (28) is singular at the points where the poltential energy
has a singularity, e.g., at re = s At such points asymptotic
form (28) does not satisfy the requirements for the behavior of

the wave function as defined by the theorems of Kato.

2. It 1s not true that the Schrodinger equation reduces
to an ordinary differential equation with respect to p as p-=;
that is, that the term containing A¥ can be neglected in (25).
For partial solutions, even when p-®, terms éontaining derivatives
with respect to the angles .Q should be given due regard. In the
case of short<ange forces such terms vanish for the asymptotic
form of the superposition of partial solutions. But it should

be expected that this will not be true in the case of Coulomb

interaction.

3. If the derivative of the potential in some direction
in configuration space has a discontinuity, then by differentiating
(28) we find that the corresponding derivative of the wave function

also undergoes a discontinuity, which 1s not permissible.

4L, Using a simple model as an example, 1t can be
demonstrated that there exists ancother asymptotic form which does

not have the above-mentioned deficiencies.

Presented below are some brief responses to these remarks.
A more detailed analysis will be given in later sections of this

article.

-03-




1) Asymptotic form (28) corresponds to free motion.
It is senseless to apply it in a region where the potential

energy 1is greater than the total energy of the systen.

2) The existence of a formal solution in the form
of series (27) indicates that the asymptotic form is self-
consistent. By differentiating (28), we can see that the terms
containing angular derivatives have an additional multiplier
0™%(1n 0)9(3 = 1,2). Thus, the part of the Hamiltonian that
contains A%, analogous to the case of shortwange forces, makes
- no contribution in the first term of the asymptotic expansion
of the superposition of partial solutions. This also agrees
with the asymptotic behavior of the Hamiltonian function in

classical mechanics.

3) If the derivative of the potential has a discon-
tinuity, then the derilvative of the asymptotic form is not equal
to the asymptotic form of the derivative of the wave function,
that is, the asymptotic form cannot be differentiated. This
can be demonstrated using as example the solution to the Hamilton-

Jacobl equation of classical mechanics.

L) The suggested "second asymptotic form" corresponds
to the superposition of the products of plane waves and Coulomb
functions of type (18). But according to (20) this is equivalent
to the asymptotic form that is being criticized. The author of’

[14] denies that the stationary phase method is applicable to the

2L




example he 1s considering, in view of the fact that this method
leads to a result in which the derivative of the wave Ifunction
undergoes a discontinuity. But, as has already been mentioned

in the preceding pvart, the discontinuity stems from illegal

differentiation.

Tt should be noted that the example considered in [14],
the so-called zero ~—order problem, corresponds To the case of one
neutral and two charged particles. Therefore, the criticism of
[14] refers not only to the results of [7-13], but primarily to

the results of an earlier article [3].

L, Model of One-Dimensional Particles

The critical remarks of [14] were extensively due to

the fact that certain features of asymptotic behavior that are

characteristic not only of Coulomb forces, but also of short-range
forces, were disregarded. At the same time, the fact that The
space is three-dimensional is not essential. For greater clarity,
therefore, let us consider a model analogous to the collision of
electrons with hydrogen atoms, but assuming that the particles

are one-dimensional and the interparticle forces are short-range.
The wave-function properties of several particles, based on a
similar model, were discussed in [16]1. Using the same model as

an example, the problem of flux conservation during collision

was examined in [17].

~05-



Let x, and x, Jdenote the coordinates of tne first
and second electrons (they will be taken to be different). The

configuration space of the two electrons is a plane (Figure 1).

The Schrodinger equation

% - '
R%Si has the form
|
1x ./:/5 .
v

R =R R
b [——'T)"—T;—“.T"(——"*l“U(xl)”}'U(IZ)'*'

2/5// k777707 Up ) — BT (e =0, (46)
/ SOCKAE .

Yl S

/)

RN
,)§
‘Aifi}/;/ \
ARy Q§§S where U 1is the attraction
§§§> potential (e.g., a well), and

U12 is the repulsion potential

. o e.g., a barrier). n Figure 1
Figure 1. Plane of confi- (e.g., ) In Fig

. o . . the shaded areas are those in
guration of the two orncz-
dimensional particles which the potentials are non-zero.
The potentials are chosen with

the same ihteraction radii:
U(x) = UlE(X) =0, if |x|>a. (47)

At distances from the center greater than 2a, the configuration

space is divided into four different regions. In three of tThem

O

ne of the potentials U or U12 is different from zero. In the

ourth

H
L

11 the potentials equal zero.
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Consider the region where only U(x,)#0 (that is, |x, |>2a,
|x,l<a). The partial solutions to equation (46) in this region

are

én(xl,xg) = yn(xg)eiklnxl, (48)

where . satisfies the equation
Yn a

r l d2 1 | /1
L—_é a—é'— + U(Xg) -€n \!n<X2> = OJ (%9)
b'e
2
while kln and €. satisfy the energy conservation condition

N+ e =E. . ' (50)

The overall solution is obtained by summing all possible partial
solutions. At the same time the constraints imposed by the
boundary conditions must be taken into account. Let us suppose
that electron 2 in the atom is found to be in the state &O
before collision, while electron 1 1s incident with the
momentum ko. A1l other terms of the sum must contaln only

waves emanating from the center. Isolating the incident wave,

we write

Wy = g () €N 3 F () D (@) €M e [F (R Be) G, () et kT R, (59)
- .
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where in the continuous-spectrun part

k% kg
L+ 2 = E. (52)

5 - . ik~ X . . . . 5
The function e~ 2 71, if kl > O, descrites motion in the

ositive direction of the axis x-, but if k, < 0, it describes
1”2 1 ?

1t in the negative direction. Therefore, according to the

boundary conditions, K, and kl in (51) are positive in the

region x, > 0 and negative in the region where x, < 0. The
A

1
amplitudes £, of course, depend on the sign of the momentum.

Thus, (51) represents two different functions. One of them is

a solution for Xq > 2a, and the other when x, < -2a.

1

In the region where only- U(x,) 1is different from zero,

|._.J

there is no. incident wave, and then we get

A ) T .
2 = Z_' g (hou) %, (y) €297 + f g (kg 1) Y&, (1) gt 'fo:—l dky. (
- X

U1
w)
g

Here, analogously, the momentea Kzn and k2 are positive for

positive x and negative for negatlve X

2 2°

In the region where only the electron interaction
potential is different from zero, the following are partial

sclutions:

Dy, (g, 1) = G (0y0) €KX,

(54)
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(55)
‘__-/;A-—E—];'::E. (56)

Solution (54) describes the relative motion of the two
electrons (with momentum k and mass 1/2) and the free motion
of their center of inertia (with momentum X and mass 2). In

this case bound states are absent and the wave function has the

form
L e a h{l K - CIWX Jr=1 2
5 j 1 (kLK) g, (ig0) i85 Ik (57)

In conformity with the boundary conditions, K and X nust

have the same sign.

Finally, in the regilon where all the potentlals are

zero, the solution is equal to the superposition of plane waves:

\IA; . )) ‘ (;‘:’-13 -;:2} . RN cil‘::x: A.'_Q—'I (‘J‘}_(.D . (58)

where k. and k., satisfy (52) and have the same signs as

1

Xl and x2.

2

We introduce the coordinates

_ . i T2

X
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and exanine the asymptotic behavior of the wave function when
1s fixed while p - <.

The directions a = O,-%,-é, ﬁ,'%FD and~%¥ are saild to
be singular. As 1s evident in Figure 1, the potential does not

vanish in these directions even at great distances. The behavior
of the wave function in these directions 1s determined by formulas

(51), (53), (57).

If o 1is not equal to any one of the singular gquantities,
then for a sufficiently large p 1t is impossible to avold getting
in the region where all the potentials are zero. Thus, for all
a except the singular directions the wave function with o
sufficiently large is a superposition of plane waves (58). It
is not difficult to comprehend that the closer « 1s to a singular
value, the greater p must be in order to escape from the
effective range of the potential. In other words, 1f « tends:
to a singular value, the domain of application of formula (58)
recedes to infinity. This inescapable fact is treated in [14]
as & defect of the asymptotic form which ostensibly can and should

be eliminated.

At large Xq and X5 the fundamental contribution to
integral (58) is made by the neighborhood of the point defined

by the conditions

ky=net oy by = wp~t oy (¢ = [2E) ) <60)
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or
-
ky=mncosc; i =nsina, (Ol)

In a manner analogous to (1l) the stationary phase method is used

to find
11r4~ q (ky /1.,,,) ”;'/'_33_ ety (62)
2 4 i7g )
1t is clear that 1§  (x,) satisfies (49) at all values
of x,; that is, even at those for which U(xg) = 0. Consequently,

Yl is a solution also in the region where the potential is absent.
This 1s also true of the functions Yg and Y3. Let us further
examine the behavior of these functions in the region where
potentials do not exist. For the continuous spectrum part we use

the functions when |x|> a they are

LT
‘."‘I: (5) e plRX = .6/ (},—[hx} if kx > o; (63&)

Vel =y, ¢* | if kx < O. (63D)

These functions are different from the functions that describe
scattering at a potential well in that the sign of the momentum is
changed. Functions having such an asymptotic form are convenient
because only a term wiﬁh a single amplitude can satisfy the
stationary condition (60) and therefore contribute to the
asymptotié expression for the sums in (51), (53) (57). They are
one~dimensional versions of the funciions having the "incident +
convergent wave" asymptotic. The functions @, are chosen in an

analcgous fashion.




I o does not egual a singular value, then when '
o - ® the arguments of the functions { and © in (51),(53),
(57) also increase infinitely. In this case the functions of
the discrete spectrum vanish, and (63a), (63b) can be used for
the continucus spectrum. Furthermore, using the stationary

rhase metnod we get

; y/2a
Wy~ (ky E) 1/ e ;

{2 .
Yo~ g (ks kx)-l/ —l;’-é’_ e?‘p;

o - :
\FSN.E_/L (k, K) ]/;’; ¢,

where

lv\ -

K=1Il+ky k== (k1—_1{2)-

The quantities kl and k2 as functions of o are determined

in accordance with (61).
Comparing (62),(64)-(66), we get

. 1 " .
f o, o) = g (ko ) = <k (, B) = g (ky, B).
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These equalities were obtained when solutions (51),(53),(57)
were applied to regions without potentials.*) Thus, (68) can

be considered as the condition of joining of the various solutions.

Equalities (68) show that the parts of the continuous
spectrum for the functions (51),(53),(57),(58) are not independent.
In order to completely define the boundary conditicns, it is
sufficient to specify only one of them. (Specified, of course,
are not the numerical values of the amplitudes, but the géneral
form of the wave function.) In addition, it 1s necessary to
specify the asympﬂotic corresponding to the excitation of discrete .
levels for the singular values of a. Since the potential U12
does not have bound states, the benavior of the wave function in
the direction « = ﬁ is determined if, e.g., (51) is specified;
that is, (57) can be constructed if (51) is known. In the usual
formulation of the problemAthe boundary conditions are not imposed
for a = —=, As is evident, this 1s also not necessary for a

N

unique determination of the scattering problem.

Note that the shaded area in Figure 1 that corresponds

to a = - makes only an infinitely small contribution to the

n

effective cross sections. To be more precise, when p — « the

radial flux through this region tends to zero. Generally speaking,

*) A similar relation for the amplitudes £ and g was obtained
in [9]. The relationship between the amplitudes f end h was

determined by Seaton (private communication).
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[

this is not a characteristic of this direction, but a result of

the fact that if the streamlines form a divergent beam, the flux
at infinity through any line of finite dimenslons vanishes. 1In
other words, the zero range of &« makes no gontribution to the
flux. An exception are the directions « =0 and @ = g, along
which a flux corresponding to excitation of discrete levels can
be considered as parallel to the axes X

or X In these

1 2°
directions the zero range of the angle « makes a finite contri-
bution to the flux. Since the potential in the shaded area
corresponding to o = E- is repulsive, the probability and flux
densities in this region decrease faster than in the adjacent
free-motion regions. This 1s evident from (57), if the behavior

of the functions P in the effective region of the repulsive

- . *
potential 1is taken into account. )

%
)Assuming that X - « when X1p = const and applying the sta-
tionary phase method to integral (57), we get

2n o
Ty N_é"' h (O, 1\’) Do (-7:12) V—l—h,—j," elKX'
where X = 2V E. In the region where (63a),(63b) are applicable,

this expression is equivalent to (66).
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quite a bit of attention is devoted in [14] to the so-
called Kato theorems [19]. These theorems define the behavior
of the wave function and its derivatives at points where the
potential has singularities. Suppose that in our model the
potential U12 has & certalin singularity for o = —, Qbvi~
ously, all the possible conseguences of Kato's theorems for such
a case should be manifest in the Dbehavior of the functions @k(xlg)
when Xip = 0. It is erroneous to require, as done in [14], that
the consequences appear in the asymptotic form that describes

motion in a region where the potential is absent.

It should be emphasized that the amplitude I for kl = k2

does not correspond to the case Xy = 0. It corresponds tc the

following limit process. First, taking a given &, we choose p

5

such that [x,,| >a and (64) cah be applied. Then we meke &

tend to ﬁ. From this it is clear that even in the limit case

of kl = k2 the asymptotic form and the amplitude are associated
with large X5 and have no relationship with points Xip = 0.
The behavior of V¥ at Xqp = 0 is defined by means of (57) in

terms of the behavior of the functions @k(xlg).

Strictly speaking, the amplitude £ when kl = k2 does
not have any immediate physical meaning. Regardless of how great
the distance to the center is, the interacting electrons cannot

move in a row in parallel as free particles. Formula (64) is not

apolicable for any o whatever in the shaded region corresponding
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to o = ﬁ. As has already been mentioned, the closer o is

e i, the greater 5 must be to apply the asymptotic form.
If o = %, the domain of application disappears (it has receded
to infinity). When « =-£ the amplitude has only the meaning
of the limit
/)= mi @ (69)
o= L

A

This fact i1s not essential, since we should expect limit (69)

to equal zero. The behavior of the amplitude f(k;, k,) is

connected with the behavior of the function @k(xlg), where
1
k = =
5 (

electrons. As we know, when k = 0, the coefficient of wmassage
> > =

kl - kg), describing the relative motion of the two

througn the barrier equals zero and the wave function within

the barrier equals zero.

5. Temkin's Model

The specific analysis of asymptotic behavior gilven in
[14] was carried out on the basis of a model that can be obtained

if in the problem of electron collision with a hydrogen atom the

real interaction potential %- is replaced by the guantity
12
(ri, r,) = r7t,ir vz v
Yif1e fo) = 01 o 1% fel
(70)
-1 ..
y(rl, r2) =r,", 1f ri< r,.
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Then, if the total orbital moment ecguals zero, the solution to

the Schridinger equation depends only on T and I, (or on

SRR, 1
- 2 2 N - AL - m ~ 1
o =\/r] + ry; eand & = arc tan r./ry). Temkin called the above-
[
mentioned approximation an approximation of zero order. It is
equivalent to taking all the s-states of the two electrons into

account.

The quantity V(Q) in this model equals

1 . -
(71)
1 . 7
V(OL) = — coso 11 o =z i

The potential as a function of a has an inflection
point at o = E. The derivative dV/da at this point becomes
discontinuous. This characteristic of the potential leads to some
difficulty, and this difficulty was apparently the first reason why
asymptotic (28) was criticized in [147.

Since V(a) is finite when Q = E, relation (29) is
satisfied for a sufficiently large p and it can be anticilpated
that asymptotic (28) is alsc applicable in this direction. By

differentiating the asymptotic form with respect to a, we get

a! 3 / ; t74
-—'Li-N 2 _d_f__.__i. _({_p_flnp)e

ixp——’l‘-Vlnp
oo ° da % da

(72)
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. . ) . . . . T -
Since av/da has a discontinuity when a = —, 1t follows from

(72) that 3dy/3a also becomes discontinuous in this case. But

[&]

~

o . = N . L) . . d -~ -
this is not permissible, since then 3 y/sa would have a

no

6-type singularity. This I1s not compatible with the fact that

all the other terms of the Schrddinger equation are finite.

This difficulty 1s absent in the triplet case, since
then, because of antisymmetry with respect to r., and Tos the
e
wave function ¥ and the amplitude I equal zero when o = —

. o~ i
(let us remember that o = +~ corresponds to r, =T

- <+
I 1 2) . In the
singlet (symmetrical) case, however, the amplitude may be different
from zero. In this case the wave functicn and amplitude satisfy

the conditions

O

S . . .. P - A TT /
Obviously, (73) is not compatible with (72) if I(Z) #
In the preceding section of this article the remark was
made that the amplitude of the joint motion of repulsive particles
should equal zero. The model being considered here refers to a
. - _ i . .
three-dimensional space. If « then the absolute magnitudes

:Z’

of the velocities are equal, while thelr directions may be

joX

ifferent, for example, opposite. There 1s no reason to assume

that the amplitude for all the different directions equals zero.
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To solve the difficulty that has arilisen, note that at

ho De possible to apply the quasi-classical

UL

O
(&N

6]
1
(@]
Q]
(6]
}.J
ct
0

_ o as
creat als

0]e:

approximation, in which

5
(o, ) Np_'“_’f(r/.) eiS(p,q)’ (74>

where S 1s the action integral of classical mechanics. In the

last section of this article 1t was shown that in the symmetrical

—_

case, with a = fﬁ the derivative of the asymptotic form of the

il

i
action integral does not equal the asymptotic form of the derivative
of this function; that 1s, the asymptotic form cannot be

differentiated. According to (74), the same is true of the wave

1

function. When o = ﬁ, formula (72) is not applicable. If
T
a=>), the domain of application of (72) recedes to infinity.

In the model being analyzed, (28) is applicable when a = —,

|
3|

but it cannot be said that expansion (27) is also applicable,
since infinite differentiability of the function V(Q) 1is

reguired for its derilvation.

Another explanation for the above-outlined difficulty
was given in [14], namely, that asymptotic form (28) is not correct
(not for any value of a). Proposed as the asymptotic form instead

of (28) was & superposition of the products of the s-components

of a plane wave ana a Coulomb function

1
rr
72

f C (k) e By, (ry) din, (75)
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which is obtained if the rapidly decreasing terms are omitted in
the solution of the so-called zeroth-order problem. In (75) the

F  are Coulomb radial functlons having the asymptotic

: (7

~J
N
~

F ~sin {kr'—i— i_ln 2kr +are T [1 L
[ B ' k

| S,

It is not difficult to see that (75) is the analog of (18).
Substituting (76) into (75), we get the asymptotic form (28)

by means of the statlionary-phase method*, wnhicn 1s the same way
as (20) was derived. Thus the results of [14] confirm the same
asymptotic form that is denied in this article. They indicate
that no other asymptotic exlsts, despite the assertion of the

author of [14].

Note also that (75) was transformed in fact to (28)
(more precisely to (20)) in [3]. According to (71), for the

potential energy of the system we have

.M~— 1 S P > .
o ———?2—, 11 I‘l = I‘2,
; (77)
Vi) 1 . _
5 ___7T’ if rl.f Toe

*In [14] the applicability of the stationary-phase method to super-
position (75? is denied. 1In his next paper [20], however, the
author of [14] refrains from objecting to the applicabllity or the
staticnary-phase method eand admits that (28) and (75) are eguivalent.
But he finds the solution of the above-described difficulty to lie

in the fact that the singlet amplitude should also equal zero when
CX.:—*TT

‘E.
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T 1s evident that the Coulomb votential acts on only one of the
electrons. Therefore, the model being considered relates to the
Case oI a single neutral particle and two charged particles, as

investigated in [3].

An asymptotic form for the exact collision problem was
also proposed in [14]. It has the form of a cumbersome series
for which the necessary condition of the asymptotic form is not
fulfilled, 1.e., the series does not identically satisfy the

Schrfdinger equation with accuracy up to second-order terms.

The basic characteristics of the one-dimensional model
we have examined are also valid for real Coulomb interaction

varticles in three-dimensional space.

In this case the potential V(Q) tends to infinity in
the singular directions. If Q approaches a singular value, the

domain of applicability of (28) goes to infinity.

In the case of short-range forces, asymptotic form (1)
does not in itself contain singularities in singular-valued angles
Q (the exponent img does not depend on the angles). Therefore,
if a careless approach is used, it may turn out that (1) is
gpplicable for the singular directions also. But from all that
has been outlined above, it is clear that this is not so.

Asymptotic form (1) signifies the approximation of plane waves

AN




and is applicable only where the potential energy need not be

taken into account.

Analogously, asymotoiic form (28) for charged particles
is applicable only where the Coulomb potential energy is low as
compared with the kinetic energy. In such a case the asymptotic
form depends expiicitly on Q. If it is applied in singular
directions, a meaningless expression 1s obtalned. Obviously 1t
is incorrect to conclude from this fact, as was done in [1L47,

that asymptotic form (28) cannot be used anywhere.

It should be emphasized that the singularity in the
asymptotic form is in no way related, generally speaking, to the

singularity in the Coulomb potential for = 0. The asymptotic

Y12
form is governed by the behavior of the potential at great distances.
If the Coulomb potential at short distances is replaced by a

potential that is finite at zero, nothing is changed in the

asymptotic form.

The ionization amplitude at k., = k corresponds to a
L

2

passage to the limit in which Q approaches a singular value, but

for every Q there is found a value of p at which rin is

very large. Hence it . is clear that both the scattering amplitude
and the asymptotic form always refer to Tip ~ @ and have no
relationship to s = 0. Consequently, the Kato theorems cannot

be applied to them, since they relate to the region where rip = 0.
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An expression analogous to (57), describing the behavior

e wave function for r,, =0, can also be formulated in the
particles. All the characteristics implied by
Xato's theorems and Coulomb repulsion should be. found in the

Coulomb functions @k(rlz).

Note that the Coulomb repulsion functions decay exponen-
tially for every given distance i1f the momentum Tends to zero.
On this basis it can be anticilpated that the scattering ampli-

tude will vanish as k1”9k2‘

This is evident from the integral expressions.

According to [10,131,

where ¥ 1s the exact wave function, while & 1is a certailn
function, regular at zero, which has the same asymptotic as the
exact wave function, in a direction corresponding to the given

amplitude; that is, it satisfies conditions (35),(36).

When k,~k,, 1t 1s convenlent to choose @ 1in a

form equivalent to (57). Such a form is

D = .(P‘(ab k, I‘) ¢ (052,-1<, R»)r. (79}
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where

" = 1 1

g~k 2k
S SO SO 1
2Tk ke K

The Coulomb functions o are determined in accordance

with (14).

The function @ describes the relative motion of the
two electrons and the motion of theilr center of inertia. The

latter is assumed to be moving in a fleld set up by the effective

charge (¢, which is determined by (83).

Due to the exponentilial decrease of the wave function of
relative motion as k-0, 1t can be expected that the amplitude
will vanish as k, >k Pnysiceally it 1s completely clear that
the amplitude of joint motion of the qepulsive particles equals

Zero.

7. Asymptotic Behavior in Clagsical Mechanics

(80)

(81)

In order to get a clearer picture of asymptotic behavior,
g L

it 1s useful to consider this problem from the viewpoint of
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Classical mechanics. Moreover, as is well known, in the range of

large distances, where a gquasi-classical approximation can be used,
the classical solution of the equations of motion corresponds

directly to the quantum solution.

Let us briefly consider an example of the problem of

electron ilonization of a hydrogen atom at a total orbital moment

of zero.

In this case the motion is defined by three coordinates:

p=yr%+r§;a=arctg-:—2; 0 = 2L (ry, o). (84)
1

For the Hamiltonian we have

H=T,+ ¢=*T* + o~V (3, O),

(85)
where
_ . ' 86
s (86)
e 4 , (87)
T = Pe TS e Pl v
V(w ©) = sina cosa ' J/1 —sin 2a cos © ( )
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The canonic eguatlons have the following form:

[}

o= Py, (89)
. 1 ’
cc:"g‘Pa; (9O>
P B .
: 4
O==?3§§;zpe; (91)
. —_1 o 4 . ' I,r
Pp—‘p‘g‘ P&‘i‘mp())ﬂ—?;; (92)
8cos2o , 1 IV
®T gtsind2e O 5 ga (93)
= (9%
p oo

The dot above a gymbol denotes a time-derivative.

Before solving system (89-94), let us investigate the

case of free motion. In this case
Y =vit e, (95)

where vi and ci arée constants.

We substitute (95) into (84). Taking (89)-(91) into

account, we get, as t->=,
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p=ul+0(1);
a = coust + O (:=1); (97)
© = const + O (t1); ‘ (99)

Pp = + 0 (17, 99)
Pe = const + O (2); (100)
Pe = const + O (t—). ' (101)
For the kinetic energy components we obtain
T, ~ -)i, p~=T* ~ o=2 const (102)

The fact that the angular part of the kinetic energy 1s somewhat
smaller than the radial part at great distances has a distinct
physical, or rather metrical meaning. It expresses the fact
that at great distances motion actually takes place in a radial
direction. In other words, the particle source (reaction zone)
can be considered as a point located at the origin. Note that the

vectors s characterize divergence of the source from the

*
origin. If c; = O, then T =0 for all values of I.

Let us return to equations (89)-(94). In the presence
of Coulomb forces motion cannot be considered completely free

even at great distances. However, 1 the concept of scattering is

~L7-




at all applicable in thilis case, then at great distances. the
trajectories should approach the free-motion trajectories asymp-

totically, and this is expressed by the boundary conditions:
o = %l; @ —const; O _, const (t = o0). (103)

The boundary conditions determine the first term in the
asymptotic expansion. In order to find the next term, we
substitute the expressions (S6)-(101), which correspond to
free motion, into the right sides of equations (89)-(94). Then
we find that in determining the first terms of the asymptotic solu-
tion we can neglect the kinetic-energy terms on the right-hanad
side, and the gquantity V(a, 6) and its derivatives can Dbe

considered as constants. After integration we get
= %t —V—l t 0 {1): )
9_'_%211 +0O(1); (HOL'%)

a = const +— O (¢!1n ¢);

(105)
© = const + 0 (! ln ¢); (106)
Py mh— e 0%, (107)
pa=-—{%'%gﬂnz+-0(n; ' (108)
pa=._{%3%%4gp+0(n‘ (109)
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In these expressions the angular momenta Dy Pg are
observed to differ most from the free-motion formulas (96)-101);
now they diverge logarithmically as t-—>=. However, if (104)-(109)
are substituted into the right-hand sides of equations (89)-(94),
these differences prove to be insignificant, and after integration
we again get (104)-(109); that is, solution (104)-(109) is self-

consistent. Thus, formulas (104)-(109) determine the asymptotic

behavior of the exact solution of system (89)-(94).

In the coordinates T the classical
eguations of motion for a system of charged

particles have the form

&r; _, Z Z,(c; —~ry .
det T LA )3

i

The asymptotic solution of this system is

. . S( Zilv; —vy)
I'!-N\:»z——é,' —l-iT—;—‘—I—J—lJ-J— Int.
i .
iFi

Substitution of this expression into (84)

leads to (104)-(109).

For the kinetic-energy components in this case we get

a

-

TDAJ;_,p—ﬁTh~p-2anpycmmn (110)
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As 1is evident, in the presence of Coulomb interaction the term

*
o " . - -
convtaining L can aLsc D

5

cct reav distances. This

w0
[q)]

Fathnd
(S

(]
(@5

e

N oA
LT C RN

(i

negl a
—n- -~ : b Fa L . 1 CR ] *

corresponds to the fact that the term containing A can be

neglected in the Schrodinger eguation when deriving asymptotic

form (28).

Now let us determine the asymptotic behavior in a

shorter range. We use the Lagrange form
S=2f(Tp+p_2T")dt. (lll)

From (110) it is clear that only Tp should be taken into account.
With due regard to (86),(104),(107) we get the already-known

result:

v
S prljf]p~x;—~_—ln o. (112)

e
The same result 1s reached by direct solution

of the Hamilton-Jacobl equation. This equation

can be written in the form

Vi

To‘f‘p*z

vV__I:
IP—

’

-

assuming that in the expressions for Tp and
T*, namely, (86),(87), the generalized momenta
have been replaced by partial derivatives of
the action integral:

as as as

G PaTTx Po= T8

Py =
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In the first aoproximation we neglect the
. . 9(_ -
term containing T . Then we have
Voooas i 2V

To~E—7m o~ ——

from which follows (112).

Differentiating (112) we fing

4S 1 oV XY 1 v
T e g~y — g Ine

which corresponds to (108),(109). Substituting
these expressions into the Hamilton-Jacobi

_QT* need not

equation, we see that the term p
actually be taken into account. Thus, (112)
1s a self-consistent asymptotic solution of

the Hamilton-Jacobl equation.

In addition, let us consider Temkin's model from the
viewpoint of classical mechanics. In this case exact solutions

to equations (89)-(94) can be found.

Instead of (88) let us take expression (71) for the
guantity V. It does not depend on the angle ©, and therefore

we can set

6 = const and pgy = O.




It remains to determine ¢ and o as functions of time.

Instead of using them for the given problem, 1t is more convenient
to use the coordinates rq and ro. Let us consider the region
where 1, > r,. The equations of motion, according to (77), have

the form

a2 de r3 (114)

Equations (114) describe free motion of the first electron and

Coulomb motion of the second and are solved in terms of elementary

functions:
ry=Cy+ vt (115)
v 1 Uy +u
Cotupt=-2r—In 22, (116)
2 115 U — Uy
where ClJ C2, and v are constants;

1

It is obvious that Uy 1s the velocity of the second electron

at iInfinity.

Omitting &£ from (115),(116), we get the eguation

[2d P A
for the trajectory inAcoqginate space:
Uy v Uy = Us
dory = 2y, — —An 2
C+n w Y ud v, —uw (118)

-50-




For a given total energy of the system, &, eguation (118)

i 2 o P - - LR T - -
contalns two arblitirary param

(@]
ot

cers  C and E that is, 1t determines

)
ot
<,
O
|
3
O
N
Y
2]
[}
o
@
M
-y
o

mily of trajectories.

Note that if (117) is taken into account, the argument

(
of the logarithm in (118) can be written in the form

Uy = U

ST o (s ) 1o+ . (119)

Uy — Uy

When t—2>«, equations (115), (116), and (118) take

the form

ry ~ut; o (120>

1, .
ry ~ Uyt + —-1n 203 t;

= 2 b (121)

r 8] 1
-—1—-/\/ - ——,,-11121).2,7'2.
U1 Uz vy -

Hence, for p and & we get expressions (104),(105), where V

is determined in accordance with (71).

Furthermore, let us consider trajectories corresponding

to the symmetric case of quantum mechanics.

The symmetric wave funcition satisfies the condition

AL

L1
[

(&)

&l
i_lv
P—l)
o)
Il
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This means that when & = — (that is, when ry = fg), the flux
nas a radlal direction. Consequently, the corresponding classical
trajectories satisfy the equation
vy = Vg, if 1y =71, (124)
Taking (117) into account, for r, =r, =1 and VvV, =V, = V
1 2 1 2
we have
1 1
v= || L4+ —; r="3z_"7.
r vt —
(125)
Comparing (118), (124), (125), we get
2 v vy + U .
C:-—;—-—};ln—l—'_". P
ui Ul vk (126)

Thus, trajectories corresponding to the symmetric case of

guantum mechanics form a one-parameter family at a given E.
In connection with the problem that arises when Temkin's
model is examined from a guantum-mechanical viewpoint, let us

study the asymptolic behavior in a shorter range.

The Hamilton-Jacobl equation has the form

(—(‘2%)2+ (gf )2— = - | (127)




(128)

where

t, .
ur vy —uy (129)

1 v are arbitrary constants; Vo and U, are determined

In the symmetric case we have the condition

as . T
%= 0 5 if a = —)I. (130)
considering that
s  aS (131)
(77‘1 L 07'2 b2,
'?— /'—blna——‘rCO:Cli— , o
da \ ory (]—3 )

we can see that (130) is equivalent to (124).

Condition (130) can be satisfied by a particular value

of the total integral of equation (127). The total iIntegral can

be obtalned by considering w as a function of vl, and vy as &
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>

function of ry and r,, defined by the condition

do | oY - 0. (133)

dv, ' Oy

By substituting (129) into (133) we get

{—/50— = C (v, ry, 1), (13)—')

dvy

where C 1s determined by (118).

We must find a function w(v such that it ensures

1)
the fulfillment of (130).

Setting r, = r, iIn (134) and teking (125) into account,

we find
aoy =€, (135)
where C as a function of v, 1s determined by (126) .

Hence

v, = VE 1 vy - Uy

(DZfC v,) dv, = i_ln——“_:___ it SRS 136
(g vy VE 2(”1—1/15) Uz nUl"“uz' ( 3 )
The integration constant i1s chosen such that

w = 0, if v1:u2=1/1?. (137)




-~
"

Note that according to (125),

The equation determining v, as a function of
ry and r, I1s obtained by comparing (134) and (135). It

nas the form

The asymptotic solution of this equation in the

coordinates p and «a for p—e and o # ﬁ nas the form
sl :

g a In o

Dy~ 7 COS Y +

. C
Uy A~ sing — ——— .

N

These solutions were obtained under the condition that in

totic region the logarithm on the right-hand side of (139) is
consilderably greater than that on the left-hand side, and this

‘L . . - s ‘ - T
condition is fulfilled for a sufficiently large op, if <« —

i

(to which v, # u, corresponds). If a—}g, then v,—>u, and an

"t

even greater o 1s necessary for the given proposition to bve
. = L - i 5 - o . o
valid. In otaner words, 1T a—}z, the domain of applicablility of

(140), (141) goes to infinity. When « =.£, the logarithmic

(138)

(139)

in the asymp-

terms on both sides of (139) are equal and (139) reduces to (124),

(125). 1Instead of (140), (141) we can then write
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(142)

1
UlNKCOSCX,'—%—‘;{?-;
v #sing - L : :
‘ 2» "owp ‘ (143>

The difference between (140), (141) and (142), (143)
is not essential when determining the asymptotic behavior of the
action. Substituting (140), (141) or (142), (143) into (128),

(129), we get in both cases

i
SNY N%p—-i— - np’ (l )
“ZSsino
which, when (71) is taken into account, is eguivalent to (30).
The situation is somewhat different when studying the
asymptotic behavior of the derivative 3S/da.
Taxing (131), (132) into account
28 s
= ¢ (— vysina + v, cos ). (_LL!-D)
Substitution of (140), (141) into (145) leads to
a8 Yy . cosa “
Ge T e T T Twsina I g, (140)

whereas (142), (143) lead to (130).
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Txpression (146) can also be gotten by differentiating
<) [

asymptotic form (144) with respect to «. Thus, when « = —,

e

the derivative of the asymptotic form does not equal the asymptotic

Torm of the derivative.

The reason why (144) is applicable when o = —, while

)_E.)
(146) is not, is that w(v,) is bounded in the neighborhood of
vy = E, while the derivative dw/dv, diverges logarithmically.
Formula (146) is applicable in the region where dw/dvl need

) 1 _TT . ) . , e e

not be accounted for;as « ~9ﬂ7 this region tends to infinity.
The asymptotic expressions we have obtained are not ap-

plicable when a = O, because the function V(a), determined Dby

(71), has a pole when a = O.
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